Supplement to: Predicting vapor-liquid phase equilibria with augmented *ab initio* interatomic potentials

Maryna Vlasiuk and Richard J. Sadus^{a)}

Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218 Hawthorn, Victoria 3122, Australia

In this supplement, the numerical values are provided for the coexistence densities and saturated vapor pressures illustrated in Figs. 1 and 2.

Table S1. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body JHBV potential (Eq. (1)).

Т, К	p, MPa	ρ vapor, kg/m ³	ho liquid, kg/m ³
85.02	0.051 ± 0.017	2.87 ± 1.08	1507.51 ± 2.23
95.03	0.139 ± 0.019	7.01 ± 0.98	1442.86 ± 1.78
110.06	0.463 ± 0.039	20.26 ± 1.70	1355.23 ± 7.98
119.94	0.836 ± 0.068	33.57 ± 2.75	1289.27 ± 4.91
129.96	1.455 ± 0.064	50.19 ± 2.37	1206.21 ± 2.95
141.98	2.709 ± 0.141	133.36 ± 6.47	1098.24 ± 13.58
147.99	3.559 ± 0.174	186.11 ± 11.72	1016.90 ± 17.44
149.99	3.949 ± 0.153	224.68 ± 24.22	986.51 ± 18.14

Table S2. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body JHBV potential (Eq. (1)) combined with the effective MWS three-body potential (Eq. (9)).

<i>T</i> , K	<i>p</i> , MPa	ho vapor, kg/m ³	ho liquid, kg/m ³
85.02	0.054 ± 0.005	3.03 ± 0.27	1463.09 ± 2.96
95.03	0.144 ± 0.014	7.29 ± 0.72	1398.94 ± 4.25
110.06	0.485 ± 0.029	21.19 ± 1.29	1289.49 ± 6.41
119.94	0.887 ± 0.045	35.62 ± 1.82	1204.67 ± 6.71
129.96	1.105 ± 0.048	52.63 ± 1.84	1155.01 ± 9.45
141.98	1.851 ± 0.025	92.75 ± 0.88	1024.99 ± 6.58
147.99	2.904 ± 0.084	145.02 ± 8.22	896.95 ± 33.46
149.99	3.534 ± 0.102	193.38 ± 6.04	788.01 ± 51.28

^{a)} Author for correspondence. Electronic mail: rsadus@swin.edu.au

Table S3. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body JHBV potential (Eq. (1)) combined with the three-body dispersion term (Eq. (7)).

Т, К	p, MPa	ho vapor, kg/m ³	$ ho$ liquid, kg/m 3
98.75	0.233 ± 0.033	14.79 ± 1.84	1335.91 ± 10.05
107.34	0.423 ± 0.036	17.22 ± 0.96	1285.93 ± 21.58
120.22	1.021 ± 0.083	36.71 ± 3.29	1171.51 ± 23.54
127.38	1.414 ± 0.062	66.42 ± 6.76	1114.13 ± 23.19
134.54	2.053 ± 0.107	96.03 ± 5.89	1012.91 ± 34.65
141.69	2.858 ± 0.139	155.27 ± 13.26	872.37 ± 35.08

Table S4. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body PS potential (Eq. (2)).

<i>T</i> , K	<i>p</i> , MPa	ρ vapor, kg/m ³	$ ho$ liquid, kg/m 3
88.91	0.076 ± 0.015	4.08 ± 1.60	1478.63 ± 2.41
99.92	0.211 ± 0.034	10.46 ± 2.41	1414.45 ± 3.60
114.90	$0.628 \ \pm \ 0.036$	26.33 ± 1.97	1318.06 ± 9.50
129.79	1.378 ± 0.049	59.33 ± 3.60	1203.03 ± 17.60
139.80	2.353 ± 0.076	99.68 ± 15.60	1110.59 ± 19.60
143.80	$2.968 \ \pm \ 0.082$	145.88 ± 21.00	1061.93 ± 21.60
147.80	3.423 ± 0.125	191.21 ± 24.00	1023.40 ± 26.23

Table S5. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body PS potential (Eq. (2)) combined with the effective MWS three-body potential (Eq. (9)).

<i>T</i> , K	<i>p</i> , MPa	ho vapor, kg/m ³	ho liquid, kg/m ³
88.91	0.077 ± 0.008	4.15 ± 1.06	1425.00 ± 3.59
99.92	0.232 ± 0.016	11.18 ± 2.05	1363.63 ± 9.95
114.90	0.673 ± 0.051	28.24 ± 4.51	1251.15 ± 16.64
129.79	1.387 ± 0.055	65.54 ± 7.81	1104.58 ± 18.00
139.80	2.384 ± 0.142	109.63 ± 14.00	926.41 ± 23.15
144.80	3.102 ± 0.214	182.80 ± 19.00	832.78 ± 26.00

Table S6. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the *ab initio* two-body PS potential (Eq. (2)) combined with the three-body dispersion term (Eq. (7)).

Т, К	p, MPa	$ ho$ vapor, kg/m 3	$ ho$ liquid, kg/m 3
98.63	0.193 ± 0.011	7.60 ± 1.06	1310.56 ± 12.36
107.21	0.384 ± 0.024	18.91 ± 2.35	1278.25 ± 18.99
120.07	0.969 ± 0.061	46.52 ± 5.61	1217.60 ± 22.41
127.22	1.306 ± 0.092	65.52 ± 4.36	1091.97 ± 24.66
134.37	1.898 ± 0.170	89.15 ± 8.36	1029.13 ± 29.50
141.51	2.436 ± 0.228	127.07 ± 12.56	942.44 ± 42.57

Table S7. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the empirical two-body BFW potential (Eq. (4)). Results taken from Ref. 48.

<i>T</i> , K	p, MPa	ρ vapor, kg/m ³	$ ho$ liquid, kg/m 3
99.47	0.207 ± 0.052	10.49 ± 1.75	1408.89 ± 6.99
106.57	0.310 ± 0.052	13.98 ± 1.75	1365.19 ± 5.24
117.23	0.775 ± 0.103	36.71 ± 3.50	1295.27 ± 6.99
120.78	0.879 ± 0.155	40.20 ± 3.50	1270.80 ± 8.74
124.33	1.137 ± 0.155	52.44 ± 3.50	1242.83 ± 8.74
127.89	1.292 ± 0.155	57.68 ± 5.24	1216.61 ± 8.74
131.44	1.603 ± 0.155	71.67 ± 3.50	1185.15 ± 5.24
134.99	1.913 ± 0.362	85.65 ± 8.74	1155.43 ± 17.48
138.54	2.171 ± 0.310	99.64 ± 8.74	1125.72 ± 10.49
142.10	2.636 ± 0.620	127.60 ± 12.24	1087.26 ± 12.24
145.65	2.998 ± 0.569	143.34 ± 10.49	1043.56 ± 13.98
149.20	3.567 ± 0.672	181.79 ± 12.24	1003.35 ± 15.73
152.75	3.877 ± 0.982	195.78 ± 17.48	943.92 ± 20.98

Table S8. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the empirical two-body BFW potential (Eq. (4)) combined with the effective MWS three-body potential (Eq. (9)).

<i>T</i> , K	<i>p</i> , MPa	ho vapor, kg/m ³	$ ho$ liquid, kg/m 3
83.81	0.037 ± 0.006	2.13 ± 3.76	1461.15 ± 2.53
94.95	0.107 ± 0.012	5.40 ± 7.38	1388.88 ± 4.55
105.99	0.298 ± 0.024	13.50 ± 3.74	1324.91 ± 9.81
117.02	0.613 ± 0.067	25.14 ± 9.98	1236.60 ± 17.85
128.06	1.210 ± 0.096	41.00 ± 12.44	1140.00 ± 22.68
139.09	1.997 ± 0.103	62.22 ± 15.24	992.57 ± 25.35

<i>T</i> , K	p, MPa	$ ho$ vapor, kg/m 3	$ ho$ liquid, kg/m 3
106.57	0.346 ± 0.083	16.61 ± 2.97	1297.02 ± 8.74
117.23	0.662 ± 0.088	30.42 ± 2.62	1197.38 ± 13.98
120.78	0.837 ± 0.109	38.11 ± 3.15	1172.91 ± 17.48
124.33	1.117 ± 0.238	51.57 ± 6.47	1150.19 ± 17.48
127.89	1.339 ± 0.331	61.18 ± 8.39	1116.97 ± 19.23
131.44	1.556 ± 0.264	70.09 ± 6.64	1071.53 ± 19.23
134.99	2.006 ± 0.429	93.69 ± 9.79	1048.80 ± 17.48
138.54	2.275 ± 0.429	105.75 ± 9.09	985.87 ± 19.23
142.10	2.533 ± 0.289	114.49 ± 5.59	896.73 ± 52.44

Table S9. Vapor-liquid coexistence properties of argon calculated from molecular simulation using the empirical two-body BFW potential (Eq. (4)) combined with the three-body dispersion term (Eq. (7)). Results taken from Ref. 48.

Table S10. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the *ab initio* two-body JHBV2 potential (Eq. (5)).

<i>Т</i> , К	p, MPa	ho vapor, kg/m ³	$ ho$ liquid, kg/m 3
115.91	0.053 ± 0.009	4.61 ± 1.71	2616.07 ± 8.38
123.58	0.085 ± 0.012	8.73 ± 1.92	2574.17 ± 4.70
131.00	0.140 ± 0.023	10.79 ± 2.22	2515.66 ± 6.41
137.64	0.224 ± 0.029	16.43 ± 1.59	2475.37 ± 3.97
146.00	0.346 ± 0.034	23.95 ± 2.83	2405.97 ± 4.48
153.07	0.505 ± 0.025	33.28 ± 2.23	2353.19 ± 2.29
160.10	0.685 ± 0.047	43.17 ± 1.90	2292.54 ± 4.39
166.53	0.851 ± 0.040	51.64 ± 2.44	2210.54 ± 6.10
176.00	1.278 ± 0.036	73.37 ± 3.13	2141.22 ± 7.52
182.62	1.587 ± 0.047	87.87 ± 3.45	2074.77 ± 7.06
189.02	2.163 ± 0.061	98.23 ± 8.64	1994.79 ± 6.67
192.64	2.500 ± 0.062	147.30 ± 13.45	1950.50 ± 12.27
197.66	2.935 ± 0.068	191.50 ± 18.64	1883.73 ± 10.85
201.08	3.536 ± 0.079	245.49 ± 28.61	1870.03 ± 17.80
204.09	3.839 ± 0.087	301.39 ± 33.19	1833.04 ± 18.97
206.90	4.376 ± 0.115	352.70 ± 34.37	1790.28 ± 33.19
209.91	4.537 ± 0.137	390.85 ± 47.72	1726.79 ± 47.72
212.93	4.963 ± 0.148	466.26 ± 28.06	1684.60 ± 28.06

<i>T</i> , K	<i>p</i> , MPa	ho vapor, kg/m ³	$ ho$ liquid, kg/m 3
115.91	0.044 ± 0.007	3.87 ± 2.20	2572.89 ± 11.47
123.58	0.077 ± 0.015	6.26 ± 2.59	2499.05 ± 12.24
137.64	0.199 ± 0.017	14.57 ± 3.57	2385.24 ± 16.42
145.54	0.323 ± 0.009	29.81 ± 4.02	2333.34 ± 17.94
153.07	0.507 ± 0.044	33.42 ± 4.90	2281.95 ± 18.19
160.10	0.629 ± 0.037	39.63 ± 5.93	2208.20 ± 21.30
166.53	0.860 ± 0.037	52.13 ± 6.02	2145.02 ± 25.83
182.60	1.535 ± 0.039	84.86 ± 6.73	1963.75 ± 25.43
189.02	2.072 ± 0.078	130.16 ± 7.36	1863.64 ± 25.70
192.64	2.565 ± 0.050	155.13 ± 8.65	1807.05 ± 27.67
198.06	2.858 ± 0.028	199.49 ± 8.38	1734.45 ± 28.25
201.08	3.479 ± 0.085	242.10 ± 10.15	1689.05 ± 32.29
204.09	3.762 ± 0.064	286.57 ± 15.28	1633.14 ± 38.21
206.90	4.040 ± 0.076	310.76 ± 20.34	1538.72 ± 46.16
208.91	4.251 ± 0.093	331.71 ± 24.13	1397.22 ± 99.33

Table S11. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the *ab initio* two-body JHBV2 potential (Eq. (5)) combined with the effective MWS three-body potential (Eq. (9)).

Table S12. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the *ab initio* two-body JHBV2 potential (Eq. (5)) combined with the three-body dispersion term (Eq. (7)).

<i>T</i> , K	p, MPa	$ ho$ vapor, kg/m 3	$ ho$ liquid, kg/m 3
115.91	0.059 ± 0.004	5.90 ± 2.93	2452.20 ± 18.19
137.60	0.240 ± 0.028	18.73 ± 2.33	2288.59 ± 25.83
153.07	0.555 ± 0.055	41.41 ± 2.26	2195.97 ± 25.43
160.10	0.637 ± 0.069	44.02 ± 2.14	2091.76 ± 17.94
166.53	0.637 ± 0.068	74.79 ± 4.16	2061.39 ± 12.24
175.97	1.015 ± 0.068	106.74 ± 5.73	1919.01 ± 16.42
182.60	1.431 ± 0.038	151.65 ± 9.33	1861.63 ± 19.89
192.64	2.020 ± 0.047	230.16 ± 10.12	1640.49 ± 28.16
197.66	2.344 ± 0.061	296.06 ± 15.24	1577.39 ± 25.62
206.90	3.438 ± 0.216	485.31 ± 20.28	1216.43 ± 32.19

using the empirical two-body Darker potential (Eq. (6)). Results taken from Ref. 40.				
<i>Т</i> , К	p, MPa	$ ho$ vapor, kg/m 3	ho liquid, kg/m ³	
141.33	0.306 ± 0.061	21.35 ± 6.10	2440.53 ± 12.20	
151.43	0.428 ± 0.061	30.51 ± 3.05	2361.21 ± 9.15	
166.57	1.039 ± 0.122	73.22 ± 6.10	2242.24 ± 15.25	
171.62	1.161 ± 0.122	79.32 ± 6.10	2190.37 ± 12.20	
176.66	1.406 ± 0.244	94.57 ± 12.20	2135.46 ± 15.25	
181.71	1.833 ± 0.244	125.08 ± 12.20	2095.80 ± 15.25	
186.76	2.078 ± 0.611	244.05 ± 21.35	2031.74 ± 21.35	
191.81	2.506 ± 0.306	179.99 ± 9.15	1973.78 ± 9.15	
196.85	2.872 ± 0.428	204.39 ± 15.25	1903.61 ± 27.46	
201.90	3.606 ± 0.428	265.41 ± 12.20	1857.85 ± 18.30	
206.95	3.972 ± 1.222	298.96 ± 36.61	1748.03 ± 51.86	
212.00	4.889 ± 2.017	399.64 ± 54.91	1671.76 ± 54.91	
215.02	5.011 ± 2.017	430.14 ± 48.81	1616.85 ± 70.17	

Table S13. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the empirical two-body Barker potential (Eq. (6)). Results taken from Ref. 48.

Table S14. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the empirical two-body Barker potential (Eq. (6)) combined with the effective MWS three-body potential (Eq. (9)).

Т, К	<i>p</i> , MPa	ho vapor, kg/m ³	ho liquid, kg/m ³
115.77	0.042 ± 0.005	3.64 ± 0.63	2564.79 ± 4.33
132.31	0.128 ± 0.008	9.73 ± 0.58	2425.87 ± 4.86
148.84	0.351 ± 0.007	23.73 ± 1.81	2289.16 ± 8.52
165.38	0.763 \pm 0.006	46.41 ± 3.45	2097.52 ± 9.58
181.92	1.506 ± 0.005	83.19 ± 2.60	1905.70 ± 11.44

Table S15. Vapor-liquid coexistence properties of krypton calculated from molecular simulation using the empirical two-body Barker potential (Eq. (6)) combined with the three-body dispersion term (Eq. (7)). Results taken from Ref. 48.

<i>T</i> , K	p, MPa	ho vapor, kg/m ³	$ ho$ liquid, kg/m 3
151.43	0.452 ± 0.073	32.03 ± 3.66	2172.07 ± 18.30
166.57	0.904 ± 0.110	61.93 ± 4.58	2046.99 ± 27.46
171.62	1.118 ± 0.153	75.05 ± 6.10	1958.52 ± 27.46
176.66	1.546 ± 0.306	106.16 ± 11.29	1924.97 ± 24.41
181.71	1.931 ± 0.153	130.87 ± 5.19	1879.21 ± 21.35
186.76	2.139 ± 0.275	145.52 ± 9.46	1784.64 ± 42.71
191.81	2.499 ± 0.281	176.33 ± 10.07	1610.75 ± 70.17
196.85	3.098 ± 0.636	224.83 ± 18.61	1552.79 ± 70.17